Feeds:
Posts
Comments

Archive for the ‘Uncategorized’ Category

This post was encouraged by similar writing about good data management post by fellow practitioner and blogger Henrik Liliendahl (Right the First time)

For data professionals like me, who have been working and preaching importance of the data quality/cleanliness and data management, it feels really good when you see good examples of enterprise information management policies and procedures at play in real life. It feels like the message of importance of data as an asset, as a “critical success enabler for the business” is being finally heard and accepted.

Recently I had a wonderful experience shopping for a laptop at http://www.dell.com. As I was shopping on their website, I configured my laptop (I’m sure all the options for my laptop were being populated from a Products MDM catalogJ). When I was ready to check out, before calculating shipping charges, website prompted me to enter my shipping address. When I entered my address, website came back to me with two corrected addresses which where enriched with additional information such as four digit extension of the zip code, expanded abbreviations etc. Website forced me to choose one of the corrected/enriched addresses before I proceeded with my order completion. This probably meant that they have implemented a solution which checks for validity and conformance of address information being entered before letting this information enter into their systems. Obviously, this investment from Dell has many benefits for Dell and hence they must have invested this effort in implementing these data quality/standardization solutions as a part of broader Enterprise Information Management framework. I was really happy for Dell. This process also meant that my order was delivered ahead of schedule without additional charge.

I am writing this because I believe in applauding and appreciating efforts done the right way. For transparency purpose, I am not related with dell.com in any professional way (employment, contract etc…), also nor did dell hire me to write this blog post. I am one of the thousands of customers they have. I just want to say good job Dell.com

I would like to appeal to all fellow bloggers and practitioners to cite examples of good information management, data management or data governance practices at work from public domain and write about them. Tweet about them under #goodeim tag. We have heard too many horror stories; there are many organizations which have been diligently at work implementing very successful information management practices, let us encourage and applaud those efforts openly.

Read Full Post »

This is a fourth blog entry in a series of blog entries highlighting how to go about securing executive sponsorship for data governance initiatives. In previous posts, I have highlighted the need for  understanding specific KPIs/metrics which executives track,  and tangible goals which are being set against those KPIs.

Almost always, there is either individual or group of individuals who work tirelessly on producing these necessary reports with KPIs/metrics for executives. Many a times these individuals have clear and precise understanding of how these metrics/KPIs are calculated, what data issues, if any, exists in underlying data which supports these metrics.

It is worthwhile to spend time with these groups of people to get a leg up on an understanding of metrics/KPI definitions, knowledge around data issues (data quality, consistency, system of record). The process of engaging these individuals will also help in winning confidence of the people who know the actual details around KPI/metrics, processes associated with calculating and reporting on these metrics. These individuals will likely to be part of your data governance team and are crucial players in winning the vote of confidence from executives as it relates to the value data governance initiatives create.

In one of my engagements with a B2 B customer, executive management had the goal of improving business with existing customers. Hence executive management wanted to track Net new versus Repeat business. Initially sales operations team had no way of reporting on this KPI, so in the early days they reported using statistical sampling. Ultimately, they created a field in their CRM system to capture new or repeat business on their opportunity data. This field was used for doing new versus repeat business KPI reporting. Unfortunately, this field was always entered manually by a sales rep while creating opportunity record. While sales operation team knew that this is not entirely accurate, they had no way of getting around it.

In my early discussions with sales operations team, when I came to know about this, I did a quick assessment for a quarter worth of data. After doing basic de-duping and some cleansing I compared my numbers versus their numbers and there was a significant difference between both of our numbers. This really helped me get sales operations team on board with data cleansing and ultimately data governance around opportunity, customers and prospects data. This discussion/interaction also helped us clearly define what business should be considered Net new and Repeat business.

Obviously, as one goes through this process of collecting information around metrics, underlying data and the process by which these numbers are crunched, it helps to have proper tools and technology in place to capture this knowledge. For example

a)     Capturing definition of metrics

b)     Capturing metadata around data sources

c)      Lineage, actual calculations behind metrics etc.

This process of capturing definitions, metadata, lineage etc. will help in getting high level visibility of the scope of things to come. Metadata and lineage can be used to identify business processes and systems which are impacting KPIs.

In summary, this process of finding people behind the operations of putting together KPIs helps in identifying subject matter experts who can give you clear and high-value pointers around “areas” which data governance initiatives need to focus early on in the process. This process will ultimately help you in recruiting people with right skill set and knowledge in your cross functional data governance team.

Previous posts on this or related topics:

Litmus Test for Data Governance Initiatives: What do you need to do to garner executive sponsorship?

Data Governance Litmus Test: Know thy KPIs

Data Governance Litmus Test: Know goals behind KPIs

Suggested next posts:

Data Governance Litmus Test: Do You Have Access to the Artifacts Used by Executives?

Read Full Post »

This is the third blog post in a series of blog posts geared towards addressing “Why, What and How?” of getting executive sponsorship for data governance initiatives. In my last post Data Governance Litmus Test: Know thy KPIs I explored importance of knowing KPIs to be able to build link between data governance initiatives outcomes and the organizational strategy. In this post I’m going to explore why it is important to know specific goals of the KPIs which are monitored on periodic basis by executives towards fulfilling organizational strategy.

Data governance initiatives typically will span multiple organizations, key business processes, heterogeneous systems/applications and several people from different lines of businesses. Any time when one is dealing with such a complex composition of players and stakeholders, it is extremely crucial to be articulate about business goals and the impact of the actions on hand on the goals. Once people understand the magnitude of impact, and how they will be responsible for such an impact, getting their co-operation, alignment becomes relatively easy.

Once you understand the KPIs which are important organizationally, you need to drill down one level below to understand what specific goals are important? The process of understanding specific goals will undoubtedly reveal many contributing factors to the fulfillment of the overall goals.

For example:

If one of the major KPIs which executives are tracking is overall spend. At this stage it is important for the data governance initiative team to understand specific goals around this KPI. For example the specifics goals around this KPI could be:

1.     Chief procurement officer has been asked to reduce spend by 2% within four quarters

2.     2% reduction across the board represents $80 million savings.

3.     This savings alone would allow organization to improve its profitability by almost a penny per share. This ultimately will reflect positively in share price improvement and will benefit all the employees of the organization.

Once such details are known, establishing a dialogue with chief procurement officer and his/her key advisers might further reveal that

1.     Their focus is going to be in three specific areas (specific products/raw materials)

2.     Not having singular view of suppliers is a key concern. Because of this issue they are not able to negotiate consistent pricing contracts with the suppliers. They believe that streamlining contracts based on overall spend with suppliers; their subsidiaries will help them achieve more than 70% of their goal.

3.     Supplier contracts are not being returned consistently resulting in higher costs in terms of minimum business guarantees and price point guarantees.

Equipped with this information, it will be much easier for data governance team to highlight and link their efforts to overall goal of reducing spend. For example, with some of this information gathered, one can already pinpoint that teams which are working with suppliers/supplier development, contract negotiations, pricing etc…. are going to be critical to get on board data governance with this initiative. Also, it is clear from these nuggets of information that the overall spend, number of suppliers, number of materials/products being procured will be some of the key metrics and interrelationship between those metrics will be critical to link any ROI from initiatives to clean supplier data, build supplier MDM etc…

With this information data governance team now can not only communicate to their team members but also the executives, that X percent of duplicate data in supplier master would potentially represent Y dollars off excessive spend. Data governance team will be able to explain not only how this can be fixed but what is required to maintain this hygiene on an ongoing basis because of the impact it will have on overall excess spend.

In summary, it is really important to understand the goals behind “what?” of the organizational strategy. Other indirect benefits of this kind of exercise are

1.     Establish communication and contacts with the business stakeholders.

2.     Understand areas where you can focus upfront for the highest impact.

3.     Understand and learn the language which you could use to effectively communicate ROI of data governance back to the executives.

In my next post, I will explore who is behind putting together these KPIs for executive in the current situation. These people are ‘the most critical’ players in the Data Governance team at both execution and implementation levels as the initiatives are kicked off.

Previous posts on this or related topics:

Litmus Test for Data Governance Initiatives: What do you need to do to garner executive sponsorship?

Data Governance Litmus Test: Know thy KPIs

Suggested next posts:

Data Governance Litmus Test: How and who is putting together metrics/KPIs for executives?

Data Governance Litmus Test: Do You Have Access to the Artifacts Used by Executives?

Read Full Post »

Read Full Post »

Welcome to my blog. This blog I will discuss wide ranging topics from Application development, development management to BI/Analytics, Data quality, Business Processes etc…From time to time I will also update on my reading lists. I would love to get your feedback and comments from time to time so, please go ahead and make this interactive, post your comments, refer this blog into your blog….

Read Full Post »